
Final Report

Immersed Boundary pisoFoam Solver

Mahmoud Zidan, Mahmoud Ammar, Khaled Boulbrachene*
Group #2

Summer Semester 2019

* Technische Universität München

Contents

1 Introduction 1

2 Theory 2
2.1 Immersed Bounday . 2
2.2 Turbulence Modeling . 4

3 Setup 5
3.1 Code . 5
3.2 Immersed Boundary Meshing and Boundary Conditions 5
3.3 Case Studies . 6

3.3.1 Flow Around a Cylinder . 6
3.3.2 Pitz Daily . 8

4 Results 9
4.1 Flow Around a Cylinder . 10
4.2 Pitz Daily . 12

5 Conclusion 12

A Appendix 14
A.1 pisoIbFoam.C . 14
A.2 Allrun . 17

1 Introduction

To address the computations of solid particles in a fluid flow, one has to solve the transient
Navier-Stokes (NS) equations in the fluid domain with the imposition of no-slip boundary con-
dition at the interface between the fluid domain and the solid object. One way to achieve this
is by the application of arbitrary Lagrangian-Eulerian method, which combines the advantages
of both Lagrangian descripton following an individual parcel as it moves through space and
Eulerian description focusing on specific locations in the space. However, this method requires
adaptive meshing depending on solid particles displacements as time evolves and therefore leads
to a substantial computational cost [1]. To avoid repeated re-meshing, the whole computational
domain containing the fluid and the solid is meshed with a fixed structured cartesian grid. As a
result, the grid will most probably not conform to the solids boundary. Here, the introduction
of the solid phase to the governing flow equations is achieved by adequately formulating the
source term marked in the NS equation (1).

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= ν

∂2u

∂x2
+ f︸︷︷︸

source term

(1)

Immersed boundary methods were first introduced by Peskin in 1972 [2] and used for flows
around flexible membranes, specifically to simulate cardiac mechanics and associated blood flow.
In this method, the embedded solid is defined via a number of points distributed over the fluid-
solid interface. As already mentioned, as the cartesian finite volume grid is produced without
considering the solid boundary, the solid cuts through the mesh and suitable incorporation of
boundary conditions in the neighborhood of the boundary is necessary.

Figure 1: Complex Immersed Boundary in fluid flow

There exist two alternatives to accommodate the effects of the boundary condition on the im-
mersed boundary, namely, the continuous forcing approach and the discrete forcing approach
[3, 4]. In the former one, the forcing term is incorporated into the continuous NS equations
through the entire computational domain before discretizing them and it is considered to be
attractive for flows with an elastic immersed boundary. On the other hand, the later approach
has the forcing applied (explicitly or implicitly) to the discretized NS equations and this was
found to be preserving the sharpness of the immersed boundary, delivering best accuracy and

1

suitable for simulations with high Reynolds number values. The method chosen in this project
is the discrete forcing approach with direct imposition of boundary conditions, which implies that
modifications are directly introduced by imposing the boundary conditions on the cut-cells only,
i.e. cells touching the immersed boundary.

Currently, there exist immersed boundary applications in foam-extend, which are icoIbFoam and
icoDyMIbFoam for tansient incompressible laminar flows, potentialIbFoam for potential flows,
simpleIbFoam and porousSimpleIbFoam for steady-state turbulent flows. In this project, work
has been extended to implement a new Immersed Boundary application, pisoIbFoam, capable
of simulating transient turbulent flows.

This report is divided into four main sections. First, the description of boundary condition
treatment and turbulence model chosen is presented in 2, followed by the implementation details
and mesh refinements in 3. Then, two case studies, namely, flow around a cylinder 4.1 and Pitz
Daily 4.2, are solved using the pisoIbFoam solver. These two cases made it possible to study
the performance of the solver when the immersed boundary is suspended against a fluid flow
and when the immersed boundary is the flow’s boundary itself. Results are then discussed in 4
and compared against pisoFoam solver results with a body fitted mesh. Finally, findings were
summarized in 5.

2 Theory

2.1 Immersed Bounday

It is worth to mention that it was referred to [5] extensively in this section. As a start, the
value of a primary variable (e.g pressure) situated at the center of an immersed boundary cell
(cut-cell) is computed by interpolating neighboring cells values and the boundary condition at
the immersed boundary point. Figure 2 demonstrates the definitions used.

Figure 2: The definition of cells and points in the IB method.

Dirichlet boundary condition interpolation to the Immersed Boundary cell is defined as:

φP =φib + C0(xP − xib) + C1(yP − yib) + C2(xP − xib)(yP − yib)
+ C3(xP − xib)2 + C4(yP − yib)2,

(2)

where the coefficients of the quadratic polynomial above are found by the weighted least squares
method on the extended stencil depicted below:

2

Figure 3: Dirichlet Boundary Condition extended stencil.

On the other hand, Neumann boundary condition is interpolated to the Immersed boundary cell
by:

φP = C0 + [nib · (∇φ)ib]x
′
P + C1y

′
P + C2x

′
P y
′
P + C3(x

′
P)2 + C4(y

′
P)2, (3)

where the primed local coordinates are taken such that the x is always perpendicular to the
immersed boundary as shown below:

Figure 4: Local coordinate system used for Neumann boundary condition quadratic interpolation

The choice of such local coordinate system reduces the quadratic equations coefficients to be
solved for as y′P always vanish.
The last point to have a closed definition is the pressure equation boundary condition of cells
neighboring an Immersed boundary cell. An extra term to the conventional definition is added:∑

f

(
1

aP

)
nf · (∇p)fSf =

∑
f

nf · vfibSf +
∑
fib

nf · vfibSf , (4)

with fib to be the cell face coinciding to the immersed boundary cage, and vfib to be the
interpolated velocity at the immersed boundary face.

3

Figure 5: Pressure cell neighbouring to IB cells

The solution of the pressure is said to be independent of the boundary condition since the velocity
at the IB face is found as specified. But pressure at IB faces is necessary for momentum equation
solution. Therefore, (3) is used to find the pressure solution at the IB cell and eventually at the
IB face.

2.2 Turbulence Modeling

In turbulence modelling there are three main models that are used in computational fluid dy-
namics (CFD), namely, Direct Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes
(RANS), and Large Eddy Simulation (LES). DNS model requires a considerable amount of com-
putational power where all length scales are resolved exactly [6]. Therefore, only RANS and
LES models are a reasonable choice to use.

What differentiates RANS from LES is that the equations are derived by taking the time average
of the NS equations and defining the velocity to be a summation of average and fluctuation parts.
On the other hand, LES method resolves the large scales of the flow and models the small scales
by means of a spatial filter. As shown in Table 1, RANS is more suitable for the current cases
as it is computationally cheaper and applicable for the 2-dimensional problems [6].

Table 1: Some differences between RANS and LES.

RANS LES

Type of solution Steady and unsteady Always unsteady

Dimensions 1D, 2D or 3D Only 3D

Computational effort Comparably small Comparably large

Grid required Relatively coarse Fine

There are many models in RANS and the focus here will be on the two-equations models. For
the cylinder case, the k-ω SST model is used due to the fact that it combines the advantages of
both k-ω and k-ε models which are capable of predicting the flow in the viscous sub-layer, and
away from the wall, respectively. On the other hand, for the pitzDaily case, the k-ε model is
used because the flow behaviour near the wall will not affect reaching a steady state, therefore,
the k-ω model is abandoned here [7].

4

3 Setup

In this section, the code of the pisoIbFoam is explained in 3.1. Also, two case studies are shown
in 3.3. The results are discussed further in section 4.

3.1 Code

As mentioned in the foam-extend wiki, one could create an application that uses the immersed
boundary toolkit with certain steps to follow. The steps followed in this work to make a pisoFoam
Immersed Boundary application, namely pisoIbFoam, are:

1. The dependacies are added by appending EXE INC in “Make/options” with:

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/immersedBoundary/immersedBoundary/lnInclude

and appending EXE LIBS in “Make/options” with:

-lsurfMesh \

-lsampling \

-limmersedBoundary \

-limmersedBoundaryTurbulence

2. The support of immersed boundary patches is added by adding the following to piso-
Foam.C:

#include "createIbMasks.H"

#include "immersedBoundaryFvPatch.H"

#include "immersedBoundaryAdjustPhi.H"

3. Before the adjustPhi command, immersedBoundaryAdjustPhi(U, phi) is added in piso-
Foam.C.

4. After each explicit update of the velocity (U = ...), the boundary conditions must be
corrected by adding U.correctBoundaryConditions();.

5. Printing the continuity error in pisoFoam.C is changed to be immersed boundary sensetive
by changing #include "continuityErrs.H" to
#include "immersedBoundaryContinuityErrs.H"

The final code for pisoIbFoam.C can be seen in section A.2 in the appendix.

3.2 Immersed Boundary Meshing and Boundary Conditions

As mentioned in 1, the background mesh is a cartesian mesh. The mesh, however, needs to
be fine around the immersed boundary to be able to capture it. Therefore, the refineMesh
OpenFOAM application was used to refine the mesh around the boundary, where a cellSet with
a surfaceToCell option given the STL immersed bonundary. The mesh is shown in Figures 8
and 10b.
The method followed to create an immersedBoundary patch is to create a boundary in “blockMesh-
Dict” with no faces, and to manually change the faces (); in “constant/polyMesh/boundary”
to internalFlow no; or internalFlow yes;, after all the refinements are finished. For exam-
ple, the immersed boundary patch is defined in the file “boundary” as:

5

https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/ImmersedBoundary#Creating_new_solvers_that_use_this_toolkit

Cylinder

{

type immersedBoundary;

nFaces 0;

startFace 29820;

internalFlow no;

}

The boundary condition on the immersed boundary patch can be applied given a type, reference
value, reference gradient, fixesValue tag, and a value. For example, a velocity wall boundary
condition can be applied using:

Cylinder

{

type immersedBoundaryWallFunction;

patchType immersedBoundary;

refValue uniform (0 0 0);

refGradient uniform (0 0 0);

fixesValue yes;

setDeadCellValue yes;

deadCellValue (0 0 0);

value uniform (0 0 0);

}

and a pressure zero gradient boundary condition would be applied using:

Cylinder

{

type immersedBoundary;

refValue uniform 0;

refGradient uniform 0;

fixesValue no;

setDeadCellValue yes;

deadCellValue 0;

value uniform 0;

}

Notice the fixesValue tag set to “yes” in case of a fixedValue boundary condition, and “no” in
case of the zeroGradient boundary condition.

3.3 Case Studies

Two cases are studied with the new application, pisoIbFoam. The first is a flow around a cylinder
and the second is the Pitz Daily case [8]. A body-fitted mesh as well as an immersed boundary
simulations are applied.

3.3.1 Flow Around a Cylinder

The geometry as well as the boundaries of the case are shown in Figure 6, where the diameter
of the cylinder is 2.

6

ou
tl

et

in
le

t

top

bottom

20 50

20
cylinder

Figure 6: Boundaries of the flow around a cylinder

The boundary conditions applied on this case can be depicted in Table 2, where the k, ε and ω
values are estimated as follows:

I = 0.16 · Re−
1
8 ,

k =
3

2
· (Uref · I)2 ,

ε =
0.164 · k1.5

0.07 · L
,

ω =
ε

k
,

(5)

where I is the turbulence intensity, Re is Reynold’s number, Uref is the inlet velocity (0.130626)
and L is the diameter of the cylinder. The dynamic viscosity of the fluid is ν =1.7894× 10−6.

Table 2: Boundary conditions of the body-fitted flow around a cylinder.

Boundary inlet / outlet / top / bottom Cylinder front / back

U
freestream

(0.130626 0 0)
fixedValue

(0 0 0)
empty

p
freestreamPressure

uniform 0
zeroGradient empty

nut
calculated
uniform 0

nutWallFunction
uniform 0

empty

k
freestream

uniform 3.352× 10−5
wallFunction

uniform 3.352× 10−5
empty

ε
freestream

uniform 2.2734× 10−7
wallFunction

uniform 2.2734× 10−7
empty

ω
freestream

uniform 0.006782
wallFunction

uniform 0.006782
empty

The mesh in case of the body-fitted simulation is divided into regions, where the the mesh is
finer around the cylinder leading to a maximum y+ of 31, and in the wake region where the
vortices are shed. The mesh is depicted in 7.

7

Figure 7: Body-fitted mesh of flow around a cylinder.

In case of the immersed boundary simulation, the background is meshed, and steps of cummu-
lative refinements are performed, as mentioned briefly in 3.2. First, the wake region is refined
using a box cellSet. Then, three refinements using the surfaceToCell are performed. Two meshes
are studied using one and two box sets, as shown in Figures 8a and 8b, respectively.

(a) Coarser mesh.

(b) Finer mesh.

Figure 8: Immersed boundary mesh of flow around a cylinder.

3.3.2 Pitz Daily

The geometry as well as the boundaries of the case are shown in Figure 9. The boundary
conditions applied are summarized in Table 3.

8

upperWall

lowerWall

Outlet

Inlet

Figure 9: Boundaries of the pitzDaily case

Table 3: Boundary conditions of the body-fitted flow around a cylinder.

Boundary inlet outlet top / bottom frontAndBack

U
fixedValue
(10 0 0)

zeroGradient
fixedValue

(0 0 0)
empty

p zeroGradient
fixedValue
uniform 0

zeroGradient empty

nut
calculated
uniform 0

calculated
uniform 0

nutWallFunction
uniform 0

empty

k
fixedValue

uniform 0.375
zeroGradient

kqRWallFunction
uniform 0.375

empty

ε
fixedValue

uniform 14.855
zeroGradient

epsilonWallFunction
uniform 14.855

empty

The body-fitted mesh shown in 10a is finer around the walls to capture the high velocity gradient
due to the no-slip boundary condition. The immersed boundary mesh shown in 10b is done by
a background mesh and a refinement of a surfaceToCell region of the STL.

(a) Body-fitted

(b) Immersed boundary

Figure 10: Mesh of the Pitz Daily case.

4 Results

In this section, the results of the cases introduced in 3.3.1 and 3.3.2 are shown and discussed.

9

4.1 Flow Around a Cylinder

Due to the aforementioned reasons in 2.2, the turbulence model chosen for this case is K-ω-SST.
The simulation’s end time is 1500s. In the body-fitted mesh, a ∆t of 0.25s is stable. In the
immersed boundary coarser mesh (Figure 8a), ∆t of 0.1s is stable for the whole simulation. In
the finer immersed boundary mesh (Figure 8b), ∆t of 0.05s is stable until t = 560s. The result
differs with the refinement around the immersed boundary. The finer mesh is computationally
expensive, and because the immersed boundary tool in foam-extend does not work in parallel
based on our trials, the mesh needs a ∆t < 0.05s, which would take more than 24 hours to
simulate. At t = 550s, the velocity field is shown in Figure 11. As shown, the body-fitted and
the fine immersed have already started vortex shedding, but that is not the case in the coarser
immersed mesh.

(a) Body-fitted mesh.

(b) Coarser immersed mesh.

(c) Finer immersed mesh.

Figure 11: Velocity magnitude at t = 550s

The velocity field at t = 1500s is shown in Figure 12. In both the body-fitted and the immersed
cases, the vortices are already shedding periodically. The velocity field is different due to the
error in the immersed boundary simulation. The errors may be due to the insufficient mesh,
since the finer mesh shows a different result as shown in Figure 11, however, computationally

10

infeasible.
In Figure 13, the pressure forces are shown. The drag forces (i.e fx) are of a similar shape and a
close magnitude and the twist force (i.e fz) is nearly zero in both cases. However, the lift force
(i.e fy) is of different magnitude and frequency. The frequency of the lift forces can be calculated
using a Fast Fourier Transform (FFT) and is 0.0041 Hz in the body-fitted case after t = 400s
and 0.000294 Hz in the coarser immersed boundary mesh after t = 1200s. The amplitude is also
significantly different.

(a) Body-fitted mesh.

(b) Coarser immersed mesh.

Figure 12: Velocity magnitude at t = 1500s

Figure 13: Pressure forces on the cylinder

11

4.2 Pitz Daily

Due to the fact that an extensive computational effort is needed and parallelizing in immersed
boundary method solver in OpenFOAM is not possible, the cylinder case could not be validated.
The Pitz Daily benchmark case was chosen because a steady state solution can be reached to
compare the results between pisoFoam and pisoIBFoam.

(a) Body-fitted mesh.

(b) Immersed mesh.

Figure 14: Velocity magnitude at t = 0.15s

In Figure 14, the results look similar when it reached a steady-state with similar velocity mag-
nitude. A slight difference can be observed in Figure 14a has a slightly smaller and wider
recirculation region than Figure 14b.

5 Conclusion

In this work, a new application to solve transient turbulent flows with immersed boundary
support, pisoIbFoam, was developed and tested with two cases, a transient vortex shedding
phenomenon of a flow around a cylinder and the flow reaching steady-state Pitz Daily benchmark
case. The application is advantageous due to its simplicity in meshing, however, could not be
fully validated due to the extended computational effort as the mesh has to be much finer around
the immersed boundary.

12

References

[1] Markus Uhlmann.
“An Immersed Boundary Method with Direct Forcing for the Simulation of Particulate
Flows”.
In: J. Comput. Phys., 209(2):448-476, 2005) (Nov. 2005).
url: https://www.sciencedirect.com/science/article/pii/S0021999105001385.

[2] Charles S Peskin.
“Flow patterns around heart valves: A numerical method”.
In: Journal of Computational Physics 10.2 (1972), pp. 252 –271.
issn: 0021-9991.
doi: https://doi.org/10.1016/0021-9991(72)90065-4.
url: http://www.sciencedirect.com/science/article/pii/0021999172900654.

[3] Science Direct Topics.
“Immersed Boundary Method - an overview”.
In: ().
url: https://www.sciencedirect.com/topics/engineering/immersed-boundary-
method.

[4] Jiyuan Tu, Guan-Heng Yeoh, and Chaoqun Liu.
“Chapter 9 - Some Advanced Topics in CFD”.
In: Computational Fluid Dynamics (Third Edition).
Ed. by Jiyuan Tu, Guan-Heng Yeoh, and Chaoqun Liu.
Third Edition.
Butterworth-Heinemann, 2018,
Pp. 369 –417.
isbn: 978-0-08-101127-0.
doi: https://doi.org/10.1016/B978-0-08-101127-0.00009-X.
url: http://www.sciencedirect.com/science/article/pii/B978008101127000009X.

[5] H. Jasak and Z. Tukovic.
“Immersed boundary method in FOAM, theory, implementation, and use”.
In: (2015).
url: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/HrvojeJasak/

ImmersedBoundary.pdf.

[6] J H. Ferziger and Milovan Perić.
Computational Methods for Fluid Dynamics.
3rd.
Springer, 2002.

[7] F. R. Menter.
“Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”.
In: AIAA Journal 32.8 (1994), pp. 1598 –1605.
doi: https://doi.org/10.2514/3.12149.
url: https://arc.aiaa.org/doi/abs/10.2514/3.12149.

[8] R. PITZ and J. DAILY.
“Experimental study of combustion in a turbulent free shear layer formed at a rearward
facing step”.
In:
19th Aerospace Sciences Meeting.
doi: 10.2514/6.1981-106.
url: https://arc.aiaa.org/doi/abs/10.2514/6.1981-106.

13

https://www.sciencedirect.com/science/article/pii/S0021999105001385
https://doi.org/https://doi.org/10.1016/0021-9991(72)90065-4
http://www.sciencedirect.com/science/article/pii/0021999172900654
https://www.sciencedirect.com/topics/engineering/immersed-boundary-method
https://www.sciencedirect.com/topics/engineering/immersed-boundary-method
https://doi.org/https://doi.org/10.1016/B978-0-08-101127-0.00009-X
http://www.sciencedirect.com/science/article/pii/B978008101127000009X
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/HrvojeJasak/ImmersedBoundary.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2015/HrvojeJasak/ImmersedBoundary.pdf
https://doi.org/https://doi.org/10.2514/3.12149
https://arc.aiaa.org/doi/abs/10.2514/3.12149
https://doi.org/10.2514/6.1981-106
https://arc.aiaa.org/doi/abs/10.2514/6.1981-106

A Appendix

A.1 pisoIbFoam.C

1 /* ---*\

2 ========= |

3 \\ / F ield | foam -extend: Open Source CFD

4 \\ / O peration | Version: 4.0

5 \\ / A nd | Web: http :// www.foam -extend.org

6 \\/ M anipulation | For copyright notice see file Copyright

7 ---

8 License

9 This file is part of foam -extend.

10
11 foam -extend is free software: you can redistribute it and/or modify it

12 under the terms of the GNU General Public License as published by the

13 Free Software Foundation , either version 3 of the License , or (at your

14 option) any later version.

15
16 foam -extend is distributed in the hope that it will be useful , but

17 WITHOUT ANY WARRANTY; without even the implied warranty of

18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

19 General Public License for more details.

20
21 You should have received a copy of the GNU General Public License

22 along with foam -extend. If not , see <http ://www.gnu.org/licenses/>.

23
24 Application

25 pisoIbFoam

26
27 Description

28 Transient solver for incompressible flow with immersed boundary.

29
30 Turbulence modelling is generic , i.e. laminar , RAS or LES may be selected.

31
32 *---*/

33
34 #include "fvCFD.H"

35 #include "singlePhaseTransportModel.H"

36 #include "turbulenceModel.H"

37 #include "pisoControl.H"

38
39 #include "immersedBoundaryFvPatch.H"

40 #include "immersedBoundaryAdjustPhi.H"

41
42 // * //

43
44 int main(int argc , char *argv [])

45 {

46 # include "setRootCase.H"

47 # include "createTime.H"

48 # include "createMesh.H"

49
50 pisoControl piso(mesh);

51
52 # include "createIbMasks.H"

53 # include "createFields.H"

54 # include "initContinuityErrs.H"

55
56 // * //

57
58 Info << "\nStarting time loop\n" << endl;

14

59
60 while (runTime.loop())

61 {

62 Info << "Time = " << runTime.timeName () << nl << endl;

63
64 # include "immersedBoundaryCourantNo.H"

65
66 // Pressure -velocity PISO corrector

67 {

68 // Momentum predictor

69
70 fvVectorMatrix UEqn

71 (

72 fvm::ddt(U)

73 + fvm::div(phi , U)

74 + turbulence ->divDevReff ()

75);

76
77 UEqn.relax ();

78
79 if (piso.momentumPredictor ())

80 {

81 solve(UEqn == -fvc::grad(p));

82 }

83
84 // --- PISO loop

85
86 while (piso.correct ())

87 {

88 volScalarField rUA = 1.0/ UEqn.A();

89
90 U = rUA*UEqn.H();

91 U.correctBoundaryConditions ();

92 phi = (fvc:: interpolate(U) & mesh.Sf()) + fvc:: ddtPhiCorr(rUA , U

, phi);

93
94 immersedBoundaryAdjustPhi(phi , U);

95 adjustPhi(phi , U, p);

96
97 // Non -orthogonal pressure corrector loop

98 while (piso.correctNonOrthogonal ())

99 {

100 // Pressure corrector

101
102 fvScalarMatrix pEqn

103 (

104 fvm:: laplacian(rUA , p) == fvc::div(phi)

105);

106
107 pEqn.setReference(pRefCell , pRefValue);

108 pEqn.solve

109 (

110 mesh.solutionDict ().solver

111 (

112 p.select(piso.finalInnerIter ())

113)

114);

115
116 if (piso.finalNonOrthogonalIter ())

117 {

118 phi -= pEqn.flux();

119 }

15

120 }

121
122 # include "immersedBoundaryContinuityErrs.H"

123
124 U -= rUA*fvc::grad(p);

125 U.correctBoundaryConditions ();

126 }

127 }

128
129 turbulence ->correct ();

130
131 runTime.write();

132
133 Info << "ExecutionTime = " << runTime.elapsedCpuTime () << " s"

134 << " ClockTime = " << runTime.elapsedClockTime () << " s"

135 << nl << endl;

136 }

137
138 Info << "End\n" << endl;

139
140 return 0;

141 }

142
143
144 // *** //

16

A.2 Allrun

1 #!/bin/sh

2 # Source tutorial run functions

3 . \$WM_PROJECT_DIR/bin/tools/RunFunctions

4
5 # Get application name

6 application="pisoIbFoam"

7
8 refineMeshByCellSet ()

9 {

10 echo "creating cell set for primary zone - $1"

11 cp system/cellSetDict.$1 system/cellSetDict

12 cellSet > log.cellSet.$1 2>&1

13 echo "refining primary zone - $1"

14 refineMesh -dict -overwrite > log.refineMesh.$1 2>&1

15 }

16
17 runApplication blockMesh -dict system/blockMeshDict

18 refineMeshByCellSet 0

19 refineMeshByCellSet 1

20 refineMeshByCellSet 2

21 refineMeshByCellSet 3

22
23 # Define the immersed boundary patch (section 3.2)

24 sed -i "s/faces ();/ internalFlow no;/g" constant/polyMesh/boundary

25
26 # Renumbers the cell list in order to reduce the bandwidth

27 runApplication renumberMesh -overwrite

28
29 cp 0/ polyMesh /* constant/polyMesh/

30 rm -rf 0

31 mkdir 0

32 cp -f 0_org/* 0/

33 runApplication $application

17

	Introduction
	Theory
	Immersed Bounday
	Turbulence Modeling

	Setup
	Code
	Immersed Boundary Meshing and Boundary Conditions
	Case Studies
	Flow Around a Cylinder
	Pitz Daily

	Results
	Flow Around a Cylinder
	Pitz Daily

	Conclusion
	Appendix
	pisoIbFoam.C
	Allrun

