

Chair for Computation in Engineering Department of Civil, Geo and Environmental Engineering Technical University of Munich

Software Lab Project 2018 Mahmoud Zidan, Gabriella Loera, Mahmoud Ammar Mohamed Elhaddad, Philipp Kopp

Abstract

This project shows an implementation of the Space-Time Finite Element Method to solve a transient heat diffusive problem. The implemented program is a stand-alone object-oriented Python code. Also, a convergence plot in the L2 norm with different polynomial orders of the hierarchic shape functions is presented.

Advantages of Space-Time FEM (STFEM):

• Using high-order basis functions for space and time discretization leads to an approximation with a higher accuracy

Results obtained using STFEM

Below, is a result of solution to a heat flux function of $f(x,t) = 2\pi \sin(2\pi x) \cos(2\pi t) + 4\pi^2 \sin(2\pi x) \sin(2\pi t)$, with the material constants being equal to one. Also, convergence plots in the L2 norm are shown.

- Offers the possibility of exploitation of HPC.
- Allows local refinement in space and time.

Code Structure

The implemented Python code is done in an object oriented way, where the class "*ModelConstructor*" has the operations to solve the problem in a semi-discrete approach or using space-time FEM. It generates an instance of the class "*Model*" where the assembly of system variables happen.

Solution of a transient heat problem using ST FEM approach.

H-refinement L2 error for different polynomial degrees (STFEM)

Conclusions and outlook

A solver for the 1D heat equation using both approaches, the semidiscrete and using space-time FEM, was developed and tested. An improvement to the project would be an extension to higher dimensions, and/or obtaining a partitioned solution for the space-time FEM to reduce the computational effort. Also, an implementation of a non-uniform mesh would allow local time refinement.

References

- [1] Thomas J. R. Hughes, Gregory M. Hulbert : Space-Time Finite Element Methods for Elastodynamics: Formulations and Error Estimates, Computer Methods in Applied Mechanics and Engineering, 66: 339 – 363, June 1987.
- [2] Alexander Düster, *High-Order FEM: Lecture Notes*, Computation in Engineering Chair TUM, April 2011.